OTC / MANE-VU Committees Meeting April 17, 2018

Francis Steitz, NJ Chair Stationary and Area Sources Committee

OZONE TRANSPORT COMMISSION

2018 SAS Charges

Charge: ...perform technical analyses to help OTC states pursue legally supportable costeffective strategies to achieve reductions of ozone-forming pollutants and satisfy CAA requirements.

Calculate & document emissions reductions inside & outside of the OTR for the recommended SAS GN SIP strategies as formalized in the <u>GN SIP Resolution</u> for use in photochemical modeling & develop recommendations for additional strategies for consideration.

GN SIP Resolution

- 1. Optimize use of existing SCR or SNCR NOx control technology on coal-fired EGUs each day of ozone season LC Workgroup
- 2. Install SCR or SNCR control technology on uncontrolled coal-fired EGUs & optimize use of such technology each day of the ozone season LC Workgroup
- 3. Adopt OTC model rule for natural gas pipeline compressor prime movers CM Workgroup

Deliverables:

Quantification of NOx Reductions

- 1. From optimizing the use of existing SCR or SNCR NOx control technology on coal-fired EGUs each day of OS has been included in OTC Modeling Committee's 2023 CAMx contribution modeling analysis
- From installing & optimizing the use of SCR or SNCR control technology on uncontrolled coal-fired EGUs - Ran ERTAC EGU tool with hourly control rates: 0.064 (SCR) & 0.125 (SNCR) Ib NOx/MMBtu → post-process the results

Cost Calculations

GN SIP Resolution #2: Emissions reduction from installing & optimizing control technologies on uncontrolled coal-fired EGUs

State	Sum of 2023 OS NOx (tons) Base Optimized	GN SIP Resolution #2	OS NOx Reduction (tons)	Results from
СТ	277.39	232.04	45.35	Eastern Regional
DE	955.38	955.38	0.00	Technical Advisory
MA	378.20	378.20	0.00	Committee (ERTAC)
MD	3,980.38	3,980.38	0.00	Run – ready for
ME	110.61	110.61	0.00	modeling
NH	352.95	445.82	-92.87	
NJ	1,969.02	1,969.02	0.00	
NY	6,193.01	6,016.49	176.52	
PA	17,096.81	16,682.15	414.67	
RI	142.59	142.59	0.00	
VT	0.00	0.00	0.00	
MANE-VU Total	31,456.33	30,912.67	543.66	
LADCO Total	74,115.70	56,229.49	17,886.21	IL, IN, MI, MN, OH, WI
SESARM Total	106,962.25	84,436.25	4,755.59	AL, FL, GA, KY, MS, NC, SC, TN, VA

Largest Contributor Workgroup

Estimated SCR & SNCR Retrofit Control Costs - Sargent & Lundy Method:

Reduction Technology	Est. Ozone Season Total NOx Reduction (tons)	Est. Ozone Season Total NOx Reduction (%)	Overall Annualized Capital Cost (\$/ton NOx removed)	Range of Unit-Specific NOx Control Cost (\$/ton NOx removed)	No. of Units with Cost Effectiveness Below \$10,000/ton
SNCR	23,653	22	4,011	3,608 - 11,896,287	57
SCR	68,020	63	20,486	7,594 – 9,745, 272	6

2017 Ozone Season CAMD/AMPD data for CSAPRU & OTC states:

- All data & estimates are ozone season based, not annual
- Analysis of retrofit costs for coal-fuel EGUs without SCR or SNCR in 2017
- Costs are in 2012 dollars
- Annualized capital costs include only capital cost components, no O&M costs
- Range of unit-specific ozone season cost includes both capital & O&M costs
- Assumptions:

	Limit (lbs NOx/MM Btu)	Per Unit Control Efficiency
SNCR	0.125	30%
SCR	0.064	90%

2023 Annual vs 2017 Ozone Season SCR costs – A Rough Comparison

 $\$273.40/\text{ton } x \frac{6,231 \text{ ann. hr}}{3,424 \text{ OS hr}} x \frac{5,734,885 \text{ ann. heat input}}{3,310,643 \text{ OS heat input}} x \frac{0.245 \text{ lb/mmBtu } 2023 \text{ inlet NOx}}{0.171 \text{ lb/mmBtu } 2017 \text{ inlet NOx}}$

- \$37,285/ton compared to \$30,430/ton OS cost using Sargent & Lundy method.
- Unit analyzed: 190.4 MW coal-fueled Gorgas Unit #9 in Alabama
- Comparison shows that <u>assumed</u> operating hours, heat input, and inlet NOx concentration are critical inputs irrespective of the control cost analysis method used
- Input Assumptions Really Matter!
- Averaging Time (Annual vs Ozone Season vs Daily) Really Matters!

Top 25 NO_x Emitters with Controls - CSAPR States, 2017 Ozone Season

				Avg. NOx Rate	NOx	Best Observed Rate		2017	
	State	Facility Name	Facility - Unit ID	(lb/MMBtu)	(tons) SCF	? (lb/mmBTU)	Year	Allocations	• 5 SCR units in Top 25
1	AR	White Bluff	6009-1	0.296	3,748			2,116	sub-optimal
2	IN	Rockport	6166-MB2	0.203	3,421			1,858	operation although
3	AR	Independence	6641-2	0.245	3,009			2,017	Gavin &
4	OH	W H Zimmer Generating Station	6019-1	0.191	2,972 Ye	s 0.056	2006	1,325	Mountaineer are stil
5	WV	Fort Martin Power Station	3943-2	0.312	2,584			875	
6	OH	Killen Station	6031-2	0.267	2,561 Ye	s 0.089	2005	719	quite good.
7	IA	Walter Scott Jr. Energy Center	1082-3	0.221	2,499			1,517	 Others have LNB,
8	KY	Paradise	1378-3	0.231	2,425 Ye	s 0.100	2005	1,303	OFA, etc. but no
9	ТΧ	Limestone	298-LM2	0.185	2,373			1,329	SNCR
10	LA	Ninemile Point	1403-5	0.276	2,037			994	
11	WV	Fort Martin Power Station	3943-1	0.302	1,870			912	• Rockport MB1 (#20)
12	ТΧ	Limestone	298-LM1	0.168	1,850			1,206	installed SCR as of
13	MI	Belle River	6034-2	0.221	1,825			926	7/26/17, but still
14	IA	Louisa	6664-101	0.191	1,817			1,523	doing some testing
15	OH	Gen J M Gavin	8102-1	0.105	1,806 Ye	s 0.069	2004	1,517	& did not have a full
16	OK	Muskogee	2952-6	0.269	1,778			624	season of use
17	WV	Mountaineer (1301)	6264-1	0.099	1,773 Ye	s 0.039	2007	1,979	
18	ТΧ	Martin Lake	6146-1	0.160	1,714			1,166	 Overall there is
19	IN	IPL - Petersburg Generating Station	994-4	0.237	1,696			750	tremendous fleet
20	IN	Rockport	6166-MB1	0.176	1,673			1,823	improvement over
21	AR	Independence	6641-1	0.240	1,671			1,840	the past couple
22	ТΧ	Martin Lake	6146-2	0.160	1,631			1,126	vears.
23	LA	Ninemile Point	1403-4	0.237	1,618			877	, caron
24	MI	Belle River	6034-1	0.197	1,608			875	
25	ТХ	H W Pirkey Power Plant	7902-1	0.166	1.598			1.090	

8

Top 25 NO_x Emitters Without SCR - CSAPR States, 2017 Ozone Season

				Avg. NOx Rate	NOx		2017
	State	Facility Name	Facility - Unit ID	(lb/MMBtu)	(tons)	SCR?	Allocations
1	AR	White Bluff	6009-1	0.296	3,748	No	2,116
2	IN	Rockport	6166-MB2	0.203	3,421	No	1,858
3	AR	Independence	6641-2	0.245	3,009	No	2,017
4	WV	Fort Martin Power Station	3943-2	0.312	2,584	No	875
5	IA	Walter Scott Jr. Energy Center	1082-3	0.221	2,499	No	1,517
6	ТΧ	Limestone	298-LM2	0.185	2,373	No	1,329
7	LA	Ninemile Point	1403-5	0.276	2,037	No	994
8	WV	Fort Martin Power Station	3943-1	0.302	1,870	No	912
9	ТΧ	Limestone	298-LM1	0.168	1,850	No	1,206
10	MI	Belle River	6034-2	0.221	1,825	No	926
11	IA	Louisa	6664-101	0.191	1,817	No	1,523
12	OK	Muskogee	2952-6	0.269	1,778	No	624
13	ТХ	Martin Lake	6146-1	0.160	1,714	No	1,166
14	IN	IPL - Petersburg Generating Station	994-4	0.237	1,696	No	750
15	AR	Independence	6641-1	0.240	1,671	No	1,840
16	ТΧ	Martin Lake	6146-2	0.160	1,631	No	1,126
17	LA	Ninemile Point	1403-4	0.237	1,618	No	877
18	MI	Belle River	6034-1	0.197	1,608	No	875
19	ТХ	H W Pirkey Power Plant	7902-1	0.166	1,598	No	1,090
20	ТХ	Oklaunion Power Station	127-1	0.246	1,572	No	918
21	ТΧ	Monticello	6147-3	0.138	1,549	No	1,055
22	LA	Little Gypsy	1402-3	0.251	1,493	No	520
23	ТΧ	Welsh Power Plant	6139-1	0.178	1,489	No	651
24	IA	Ottumwa	6254-1	0.138	1,469	No	1,361
25	MO	Sioux	2107-1	0.215	1.402	No	554

- 3 LA Units NG
- 1 TX Unit coal, SNCR
- all others have LNB, OFA, etc. but no PCC except for TX- Monticello.

CSAPR Allowance Prices (4/17/15 – 4/6/18)

Control Measures Subgroup

Pipeline Transportation of Natural Gas

Facilities emitting ≥50 tpy NOx in CSAPR U & OTR States

Facilities in OTR States emit (50-746) tpy NOx 11

Control Measures Subgroup

Deliverables: Estimation of potential emissions reduction & costs of implementing limits in the 2017 OTC Model Rule on Natural Gas Pipeline Compressor Fuel-Fired Prime Movers

NOx Limits in the Model Rule:

Four-Stroke R	ich Burn ICE	Two-Stroke Lean Burn ICE			
Nameplate Rating in HP	NOx Rate in g/BHP-hr (% Reduction)	Nameplate Rating in HP	NOx Rate in g/BHP-hr (% Reduction)		
200 - 499	1.5 (90)	200 - 499	2.0 (80)		
500 - 1999	1.5 (90)	500 - 1999	1.5 (80)		
≥2000	1.0 (95)	≥2000	1.5 (90)		
		Combustion Turbines			
Four-Stroke Le	ean Burn ICE	Combus	tion Turbines		
Four-Stroke Le Nameplate Rating in HP	ean Burn ICE NOx Rate in g/BHP-hr (% Reduction)	Combust Nameplate Rating in HP (MW)	tion Turbines NOx Rate in ppmvd @ 15% O ₂ (lb/MWhr)		
Four-Stroke Le Nameplate Rating in HP 200 - 499	ean Burn ICE NOx Rate in g/BHP-hr (% Reduction) 1.5 (90)	Combust Nameplate Rating in HP (MW) ≤2000 (1.5)	tion Turbines NOx Rate in ppmvd @ 15% O ₂ (lb/MWhr) 150.0 (6.0)		
Four-Stroke Le Nameplate Rating in HP 200 - 499 500 - 1999	ean Burn ICE NOx Rate in g/BHP-hr (% Reduction) 1.5 (90) 1.5 (90)	Combust Nameplate Rating in HP (MW) ≤2000 (1.5) 2000 - 4999 (1.5-3.7)	tion Turbines NOx Rate in ppmvd @ 15% O ₂ (lb/MWhr) 150.0 (6.0) 50.0 (2.0)		

Process:

- Develop an Emissions Modeling Framework (EMF) control packet to simulate NOx reductions associated with the proposed 2017 OTC Model Rule
- Use control packet in OTC's GN SIP air quality modeling (2011 platform with 2023 future year projection)

Progress to-date:

- Drafted a Work Plan; Extracted relevant point & nonpoint emissions using EMF
- Selected inventory for analysis 2023 Gamma Inventory, Eastern Modeling Domain omitting partial states (TX, LA, AR, MO) since only small portions of these states are in OTC modeling domain
- Compared Model Rule limits with existing permitted limits where data is available
- Setting up EMF query based on SCC codes to identify these devices, to apply the NOx limits in OTC Model Rule
- Developing NOx control cost estimates using the "Mojave Desert AQMD IC Engine NOx RACT Staff Paper" as a reference

Control Measures Subgroup

- Preliminary analysis of point source NG compressor engines indicates significant potential reductions of NOx
- Preliminary analysis of non-point source NG compressor engines (e.g. rich & lean burn engines) indicates NOx reductions have been accounted for in 2023 base case modeling

Ongoing Tasks and Challenges:

- Gathering more on-line permit data, very time-consuming
- Don't want to apply controls to units with permit limits at or below Model Rule limits
- Many data gaps (e.g. design capacity is missing for many units, making it difficult to apply the appropriate model rule limit)

Next Steps:

- Continue comparison with permit data
- Decide on the most appropriate way to apply limits/reductions to point and nonpoint sources
- Develop the EMF control packet itself
- Develop Documentation

NG Pipeline Compressor Stations NOx Emissions

15

Consumer Products Workgroup

Standing Charge: Evaluate and make recommendations to OTC member states of updates to any previously developed OTC model rule that is based on a CARB rule & shall update any such model rules to include any product categories or standards adopted by CARB.

OTC Model Rule for Consumer Products - Phase V - Summary of Proposed Updates:

- Based on latest CARB rule, amended as appropriate for the OTR, with the addition of new categories & more stringent VOC limits for existing categories & revised definition language;
- Includes limits in CA with an effective date of January 1, 2017 or earlier in CA;
- Will not include limits with future effective dates in CA or reactivity-based limits (lubricants at 10%);
- Includes insect repellent, personal fragrance & windshield washer fluid limits previously excluded;
- Includes an optional 3 year sell through limit for existing products that do not comply with VOC limits;
- Removes category/exemption for structural waterproof adhesives.

Consumer Products Model Rule - Phase V

New Product Categories, New VOC Limits, Revised Definitions

New Product Categories

- Astringent/Toner
- Fabric Softener
- Floor Maintenance Product
- Insect Repellent
- Motor Vehicle Wash
- Multi-purpose Solvent & Paint Thinner, Aerosol
- Personal Fragrance Product
- Pressurized Gas Duster
- Tire or Wheel Cleaner
- Windshield Water Repellent
- Dual Purpose Air Freshener/Disinfectant

Amended Product Categories

- Adhesives, Aerosol
- Air Freshener, Double Phase
- Automotive Windshield Washer Fluid
- Carpet/Upholstery Cleaners
- Dusting Aid
- Fabric Protectant
- Floor Polish or Wax
- Furniture Maintenance Product
- General Purpose Cleaner
- General Purpose Degreaser
- Glass Cleaner
- Heavy-duty Hand Cleaner or Soap
- Insecticide

- Lubricants (25%)
- Metal Polish or Cleanser
- Odor Remover/Eliminator
- Penetrant
- Sealant or Caulking Compound
- Spot Remover

Consumer Products Model Rule - Phase V

IN

Product Categories

(\cap)		
U	U	

- Structural Waterproof
 Adhesive and most likely
 CP candidate used for VOC
- Multi-purpose Lubricant
 @ 10%
- Automotive Windshield Washer Fluid @ 25%
- Multi-purpose Lubricant @ 25%
- Insect Repellant Aerosol @ 65%
- Personal Fragrance Product @ CARB VOC
- Anti-seize Lubricant @ CARB VOC
- Cutting or Tapping Oil @ CARB VOC
- Gear, Chain or Wire Lubricant @ CARB VOC
- Optional prohibition for MeCl/Perc/TCE in Brake Cleaner

NOT IN CARB

 Automotive Windshield Cleaner @ 35%

Provisions: Defined Sell-through Period vs Unlimited Sell-through

Benefits

Total Emission Reductions in the OTR:

- 29 tons per day VOC*
- 7 % of Consumer Products VOC Inventory
- 3 % of Area Source VOC Inventory

Categories with Highest Reductions:

- General Purpose Cleaners
- Air Fresheners
- Lubricants
- General Purpose Degreasers

* Reductions based on CARB estimates for CA, at the time of proposal in CA, adjusted using population.

Consumer Products Model Rule - Phase V

Costs

Total Average Cost Effectiveness for All Categories: \$5,613/ton* or \$2.81/lb VOC reduced*

Categories with Highest Cost per Ton of VOC Reduced:

- Spot Removers
- Sealant or Caulking Compounds
- Glass Cleaners, aerosol
- Personal Fragrances

Categories with Highest Annualized Costs:

- Personal Fragrances
- Sealant or Caulking Compounds
- Lubricants
- Spot Removers

Categories with Lowest Cost per Ton of VOC Reduced:

- Fabric Softeners
- Metal Polishes or Cleansers
- Glass Cleaners, nonaerosol
- Air Fresheners
- * Costs based on CARB estimates for CA, at the time of proposal in CA. Cost estimates are conservative as they include one time research and development and reformulation costs.

BONUS SLIDES

GN SIP Resolution #2: Emissions reduction from installing & optimizing control technologies on uncontrolled coal-fired EGUs

Results from ERTAC Run – ready for modeling			State	Sum of 2023 OS NOx (tons) Base Optimized	GN SIP Resolution #2	OS NOx Reduction (tons)	
	Sum of 2023 OS NOx (tons) Base	GN SIP Resolution	OS NOx Reduction (tons)	AL	7,373.60	6,888.63	484.97
State				FL	15,738.33	13,918.09	1,820.24
	Optimized	#2		GA	9,831.84	9,403.68	428.16
IL	14,443.29	11,804.24	2,639.06	КҮ	21,399.47	10,826.78	10,572.68
IN	18,503.31	14,521.31	3,982.00	MS	9,077.48	5,097.75	3,979.73
MI	12,354.57	7,858.69	4,495.88	NC	13,193.81	13,193.81	0.00
MN	6,592.19	4,158.46	2,433.73	SC	4,428.52	4,428.52	0.00
OH	15,288.56	12,010.83	3,277.72	TN	4,805.63	4,805.63	0.00
WI	6,933.79	5,875.97	1,057.82	VA	5,320.50	4,835.87	484.62
LADCO Total	74,115.70	56,229.49	17,886.21	SESARM Total	106,962.25	84,436.25	4,755.59

Top NOx Emitting Stationary Source Categories

(Excluding EGUs, Airport LTO, & Sources from VA); Source: 2014 NEI v.1

Top 15 in CSAPR Update & OTR States

200,000

160,000

OTR